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Editorial Note: This paper was originally prepared for publication in 1993 after a
lengthy gestation. It was submitted to and refereed by Medical Education but declined as
it could not stand alone without its companion paper (see comments there). Some of the
referees’ minor comments have been adopted when preparing this transcription.

As far as could be determined then, and I have seen nothing since to change my view, this
remains an entirely unique perception on a use of the data from Multiple Choice Question
examinations.

(2005) M.D.Buckley-Sharp
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Summary

This paper uses the data from two multiple choice question examinations in Medicine.
The raw response data is analysed using standard methods of numerical taxonomy.
Various solutions are proposed to the classification of the participants, who are the
students as well as the examiner. The solutions demonstrate stability of the classification
between the two examinations: interpretation is improved by recognising a null group
who had sat the second examination, but not the first. Some features of the proposed
groups are described, including the possibility that some differences are due to secondary

skills in taking examinations in the multiple choice question format.
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Introduction

The standard procedure in multiple choice question (MCQ) examinations, as in all other
types of examination, is to derive a score for each student or candidate. By whatever
method, this is a unidimensional score. It is assumed that two students with the same
score have performed identically, and that where two students have different scores then

one is better than the other.

Buckley-Sharp (1993) proposed that unidimensional scoring is a limited view of the data,
and that the methods of numerical taxonomy have the potential to elucidate groups or
clusters of participants. Such a classification might have value for diagnostic, therapeutic,

or prognostic purposes in education.

Earlier work by Buckley-Sharp et al (1969) used available scoring parameters as
continuous variables for clustering. In a simplistic way, the setting of examinations
simultaneously in different subjects, whether at secondary or tertiary educational level, is

also a recognition that students may not perform equally well at everything.

Student performances are not homogeneous, but neither are they completely
heterogeneous ie, absolutely individual. More likely, a limited number of performance

patterns exist within any group of students.

It is suggested that the raw response data from MCQ examinations can be used directly
for numerical taxonomy. The raw data is binary, and of high dimensionality. Although the
calculations in numerical taxonomy are not complex, the quantity of calculation is high
and of order m>.n (where m is the number of participants, and n is the number of data
items). The feasibility of computing a taxonomy is more limited by the number of

participants, while the large number of data items is advantageous and tolerable.

For a classification of students to have any value, it must first be shown to have some
stability. Stability is shown by a repetition of the same classification memberships from a
separate data collection. Without prior experience, stability would seem more likely if two
collections of data are close in time, and are in the same subject area. If there were no
classification stability even with these restrictions, then stability is unlikely for other more
relaxed comparisons. For example, it would seem quite unlikely that school Physics and
final Medicine should each demonstrate the same taxonomy of students, although this has

never been tested.
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This paper has two purposes. It provides examples of the methods of numerical taxonomy
of MCQ examinations data: expanding on the review by Buckley-Sharp (1993). It also

seeks to demonstrate stability of classification results, albeit under tight restrictions.

<<Figure 1 of the original paper is omitted, and references to it have been removed>>

Data

The first MCQ examination studied was a pre-final test in Medicine (Pretest). There were
60 questions in the five-alternative true-false format, making 300 alternatives in all.
Responses were collected by the two-box method ie, one box for 'select if true' and an

associated box for 'select if false'. Therefore, there were 600 response boxes.

The second MCQ examination was a final-MB (University of London) test in Medicine
(Final). There were 100 questions in the same format and with response data collected by

the same method as the Pretest. Therefore there were 1000 response boxes.

These two examinations were taken only a few weeks apart. The concentration by subject

and time was chosen deliberately to see whether cluster stability could exist.

Candidates taking both examinations were matched by name, and the sex of each
candidate was recorded. Some candidates at this school were preparing for the Oxford
BM degree and took only the Pretest. Some candidates for the London MB degree did
not take the Pretest. Therefore each examination had a null group of candidates: those
who did not take the examination, but did take the other.

Methods

Data collection was via mark-sense cards, and both examinations were scored
conventionally using the SCORE9 program (Buckley-Sharp & Harris (1971)). Standard
examination and question analysis statistics were obtained (Buckley-Sharp & Harris
(1972)).
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SCORED is part of a much larger suite (called UT3), which allows examination response
data collected in various ways to be translated to a common format, and held in a library
for further analysis. UT3 already contained a wide and necessary range of support
routines. It was sufficient to add three more respectively,

e To create a matrix of distance coefficients;

e To run a clustering algorithm; and

e To display a dendrogram used to illustrate the clustering results.

The numerical methods used were those described by Buckley-Sharp (1993). The objects
in the analysis were all the students/candidates and including the examiner. Coefficients
between each pair of objects were calculated as the average squared Euclidean distance.
This distance is simply the proportion of binary disagreements between the pair of objects,

and is the same as the Hamming distance.

Cluster analysis was performed using Ward's Incremental Sum of Squares (ISS) method.
At each cluster cycle, one pair of objects or intermediate clusters was chosen for fusion,
where the corresponding distance coefficient was the minimum in the current matrix. The
distance coefficients from the new cluster to all other remaining objects/clusters were then
recalculated, and the matrix reduced. Cycles by this method are iterative. The m objects
start, one each, in m clusters. After a total of (m-1) fusion steps, all objects are finally in

the same cluster.

The identities of the chosen cluster fusion-pair and their pre-fusion distance coefficient
were recorded at each fusion step. The resulting list, by fusion step number, was used to
organise the display of a dendrogram of the clustering process. The fusion distance

function was used as the axis of the dendrogram.

Each student was identified by a candidate number, with the examiner as candidate 'zero'.
Each fusion was described using these numbers, with the successor fused cluster adopting
the lower candidate number. The examiner must therefore retain the 'zero' label
throughout, and the last fusion cycle must merge to the examiner. The examiner appears
along one complete edge of the display dendrogram. While this is a convention, and not
meant to give unique properties to the examiner, it does have the merit that the examiner
is separately regarded as having the perfect score. Therefore, students who cluster early
to the examiner, and hence are shown near to the examiner's edge on the dendrogram, are

likely to be those with the highest scores. The presentation of results which follows uses
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letter labels for the last few clusters. It is still the case that the examiner is in the cluster
with the first label.

The recommendation of a cluster solution remains arbitrary. It is likely to be within the
last few cluster fusion cycles ie, having relatively few clusters. Youngman (1979) is

merely one of many to use a rapid rise in the fusion distance function as a criterion.

In this study, which is searching also for stability between taxonomies obtained from two
sources, use has been made of Kappa, the coefficient of agreement, proposed by Cohen
(1960), and cited by Youngman (1979). Two cluster solutions for comparison are set out
in a ¢ x c table, as in Table 1, where c is the number of clusters in both solutions. Each
cell contains the count of original objects in each cluster of the two solutions: the rows

and columns are shuffled to maximise the diagonal elements.

Table 1: An example of a 3x3 cluster comparison contingency table, with marginal
totals. Values in the table are counts of matched objects in each cluster of two proposed
solutions, labeled (L,M,N) and (X,Y,Z).

Solution-1 clusters L M N
Solution-2 clusters
X 25 5 7 37
Y 6 24 38
Z 9 23 36
35 38 38 111

Then, K =(P,-P.) /(1 - P,)

where

K is the Kappa coefficient of agreement;

P, is the observed on-diagonal agreement ie, the sum of the on-diagonal
elements divided by the total objects;

P. is a correction for chance agreement which is found by the standard chi-
square method. For each on-diagonal element the chance expected value is
<row-total> x <column-total> / <table-total>

and the chance agreement is then the sum of these on-diagonal estimates
divided by the total objects

And, for the values in Table 1,
P,= 72/111 = 0.649

P, =

{ 37x35)/111 + (38x38)/111 + (36 x38)/111 } /111 = 0.333

K = (0.649-0.333) / (1-0.333) = 0.47
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Kappa ranges from O to 1. There is no formal test for statistical significance ie,
improvement over chance: this work is looking instead for good agreement. Vogt et al
(1987) includes a further discussion of Kappa, and also of extensions to several other

methods for comparing cluster solutions.

Notice that in the calculation of P, all off-diagonal elements (disagreements) have equal
status. Although information may be available on the spatial distribution and distances
between particular clusters, no use is made of this in calculating P., and hence Kappa.
Shuffling the rows and columns (Table 1) to maximise the on-diagonal elements will
maximise Kappa. However, the analyst might be faced with several possible
arrangements. A sub-maximal Kappa might be preferred if a particular match of solutions
was considered more relevant after reviewing the actual relationships of clusters.

(Referees note: there is a version of Kappa allowing off-diagonal weighting.)

There is a restriction, when using Kappa, to pairs of proposed solutions with equal
numbers of clusters. However, it will be seen later how a null cluster can help in the
analysis.

Results

The basic scoring results from the two examinations are shown in Table 2. Both

examinations had high reliability, presumably because they were quite long.
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Table 2: Basic results from the two examinations studied.

Examination Pretest Final
Questions MCQ 60 100

Response boxes | 600 1000
Students Both exams 73 73

Pretest only 4

Final only 13

Total 77 86
Scores. mean(sd) % Correct 62.2 (11.2) 66.3 (10.0)

YoError 14.1 (5.4) (12.4 (4.6)

9% Adjusted 48.1 (12.5) 53.8(10.4)
Reliability KR20 0.94 0.95
Cluster objects Examiner 1 1

Students 77 86

Total 78 87

Both exams 74 74

There were 74 objects common to both examinations. Four additional objects in the

Pretest are sufficiently few in number to be regarded as passengers in the process and

unlikely to distort the clustering process. However, it will be seen later how interpretation

of the cluster results was aided by considering the 13 additional objects in the Final

examination as a separate null group in the Pretest.

Figure 2: Graphs of the fusion distance functions for the last twenty fusion steps. Pretest

and Final examinations.
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Figure 3: Dendrogram showing fusions from the eight-cluster state in the Pretest. The
numbers for each cluster A to H show the membership size: at each fusion, memberships
are added. Numbers in brackets show the subset of members who also sat the Final

examination.
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00 0.1 02 03 04 0506 0708 09 10 11 1.2
o] (913 (=T T I I N N I D T D T A |

14(12) 31(29)
9(9)
8(8)
11(11) 47(45)
11(10)
6(6)
9(9)
10(9)

IO Mmoo mrP

Figure 4: Dendrogram showing fusions from the eight-cluster state in the Final. The
numbers for each cluster O to U show the membership size: at each fusion, memberships
are added. Numbers in brackets show the subset of members who also sat the Pretest

examination.
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Figure 2 shows the successive values of the fusion distance functions. The two
examinations had different numbers of objects, and therefore different numbers of fusions
steps, but the last twenty steps are shown in each case. Both fusion functions show the
expected monotonic rise. This is most marked for the last fusion cycle when all objects
join together into one cluster, and suggests that at least two clusters exist in each
examination. Whether there are more clusters, up to about 4 in the Final examination, is

more debatable.

Figure 3 shows the dendrogram starting at an eight-cluster state for the Pretest. Pretest
clusters have been labeled A to H. Figure 4 shows the dendrogram starting at a seven-
cluster state for the Final. Final clusters have been labeled O to U. These partial solutions
were chosen as starting points for further study. Both have five-membered lower cluster

groups. The upper groups differ, with C an apparent orphan cluster.

As noted above, fusion of clusters into the lower labeled object is arbitrary, and Figure 4
would look even more like Figure 3 if clusters T,U were really matched to D,E (or E,D).
However, Table 3 suggests that this is not appropriate, since joint cluster membership
shows that D,E are preferentially related to Q,R.

Table 3: Joint cluster membership for 74 objects participating in both examinations.
Clusters labels as in Figure 3 (Pretest) and Figure 4 (Final). Quadrants divide major

cluster groups.

Final (0] P Q R S T U
Pretest
A 6 5 0 0 0 0 1
B 2 5 0 1 0 0 1
C 3 3 0 0 0 1 1
D 0 2 6 2 0 0 1
E 0 0 3 5 1 0 1
F 0 2 1 1 0 0 2
G 0 3 2 1 1 2 0
H 0 0 3 1 2 1 2

The upper left quadrant in Table 3 contains orphan cluster C. To meet the requirement for

symmetry, C has been joined to B when calculating Kappa. The lower right quadrant
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could be optimised further by transposing F and H, but this does not fit with later
consolidations. The value of Kappa for this table is sub-maximal.

Table 4 shows the comparison statistics for Table 3, and also for subsequent

consolidations.

Table 4: Statistics for the various contingency tables shown. Sy is the average fusion
distance function. P, is the observed proportional agreement. P, is the correction for

expected agreement. K is Kappa, the coefficient of agreement.

From Clusters Sa P, P. K
Table 3 7x7 0.357 0.392 0.162 0.27
Table 5 4x4 0.410 0.622 0.320 0.44
Table 6 3x3 0.449 0.676 0.383 0.47
Table 7 2x2 0.528 0.838 0.518 0.66
Table 8 3x3 n/a 0.690 0.363 0.51

It would be possible to step down through each possible cluster consolidation, but the
next solution which seems worthy of review is the 4x4 arrangement shown in Table 5, for
which the statistics are shown in Table 4. Cluster H is again ambiguous, because the same
value for Kappa would be obtained if H was transposed with G.

Table S: Joint cluster membership for 74 objects participating in both examinations.
Clusters labels as in Figure 3 (Pretest) and Figure 4 (Final). Consolidation of Table 3 into
4x4 cluster solution.

Final o,p Q.R S T,U
Pretest
A,B,C 24 1 0 4
D,E,F 4 18 1 4
G 3 3 1 2
H 2 3
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Table 6: Joint cluster membership for 74 objects participating in both examinations.
Clusters labels as in Figure 3 (Pretest) and Figure 4 (Final). Consolidation of Table 5 into
3x3 cluster solution.

Final o,p Q.R,S T,U
Pretest
A,B,C 24 1
D.E,F,.G 7 23
H 0 6

Table 7: Joint cluster membership for 74 objects participating in both examinations.
Clusters labels as in Figure 3 (Pretest) and Figure 4 (Final). Consolidation of Table 6 into
2x2 cluster solution.

Final o,p Q,R,S, T, U
Pretest
A,B,C 24 5
D,E,F,G,H 7 38

Table 6 shows a 3x3 arrangement. Here, cluster H is left on its own. The 2x2
arrangement is an obvious possible solution, and is shown in Table 7. The high value of
the distance function increment (Table 4) suggests that at least two real distinct clusters

are present in both examinations.

The 13 students who sat the Final, but did not sit the Pretest, were then reconsidered.
Their cluster membership was not evenly distributed amongst the other Final groups. To
use them, while allowing for the calculation of Kappa, it was necessary to have only two

Pretest clusters, but to use a three-cluster Final. These results are shown in Table 8.

Table 8: Joint cluster membership for 87 objects; 74 participating in both examinations,
and 13 taking only the Final (null group in Pretest). Clusters labels as in Figure 3 (Pretest)
and Figure 4 (Final).

Final o,p Q,R,S T,U
Pretest
A,B,C 24 1
D,E,F,G,H 7 29
null group 2 4
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To evaluate these possible solutions further, it is necessary to return to external criteria.
The sex had been recorded for each student. Table 9 shows that sex is correlated with the
two cluster solutions for both Pretest and Final. In this analysis, all students are included,

and only the examiner is omitted.

Table 9: Relationship between sex and cluster membership for Pretest and Final

examinations. Clusters labels as in Figure 3 (Pretest) and Figure 4 (Final).

Pretest Male Female Final Male Female
A,B,C 12 18 o,p 14 18
D,E,F,G,H # 33 13 Q. RS, T,U |37 17
Chi-square 7.3 5.2

p <0.01 <0.03

# unknown sex, 1 omitted
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Figure 5: Cluster membership (students only) displayed according to adjusted
percentage score for both Pretest and Final. A refers to clusters A,B,C; D refers to
clusters D,E,F,G,H (Figure 3). O refers to clusters O,P; Q refers to clusters Q,R,S; T
refers to clusters T,U (Figure 4).

PreTest Final
A (@]
A (@]
AAA (@]
AA (@]
AAAAA 00
AA (@]
A 00
AA (@]
AAA D 00 Q
AAA (@]
A D 0000
DDDD 00
AAA DD 00 Q
DD 0000
DD 000 Q
A DD 00 Q T
A DD Q T
A DDDDD Q
DDD (@] Q T
DD (@] Q TT
DD Q
DDD TT
DD QQ TTTT
DDD Q T
DDD QQQ
D Q T
DD T
D QQ
D QQ TT
DD Q T
D Q T
QQQ
QQQQ
T
T
QQ
Q
Q
Q

Figure 5 shows cluster membership according to the adjusted percentage scores obtained
by students. Clusters A and O contain the examiner for the Pretest and Final respectively,
so that these clusters obviously include the highest student scores. There is considerable
overlap of scores between clusters, especially between clusters QRS and TU. Are QRS

and TU really similar, or can they be distinguished?
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Table 10: Relationship between score parameters and cluster membership for all Pretest

students. Cluster labels as in Figure 3. Scores are shown as mean (s.d.).

Cluster(s) A,B,C D.E,F,G,H
Members 30 47
Scores mean(sd)
9% Correct 73.4 (5.5) 55.0(7.6) ABC > DEFGH
90Error 14.2 (4.2) 14.0 (6.1) ABC = DEFGH
% Adjusted 59.2 (6.9) 41.0 (9.9) ABC > DEFGH
%Decisions 87.6 (6.9) 69.0 (9.9) ABC > DEFGH

Table 11: Relationship between score parameters and cluster membership for all Final

students. Cluster labels as in Figure 4. Scores are shown as mean (s.d.).

Cluster(s) o,p Q.R,S T,U
Members 32 34 20
Scores mean(sd)
90Correct 76.4 (4.7) | 57.1(6.2) 65.7 (4.5) OP>TU>QRS
90Error 12.5 (3.3) 10.2 (4.4) 16.5 (4.5) OP=QRS<TU
% Adjusted 63.9 (6.1) | 46.9 (8.4) 49.3 (5.5) OP>TU=QRS
%Decisions 88.9(6.1) | 67.2(8.4) 82.2 (5.5) OP>TU>QRS

Table 10 shows more detailed score parameters for the Pretest clusters (two-cluster
solution). Differences were confirmed by Student's t test (not shown). Cluster ABC
members obtained their higher adjusted percentage scores through making more
decisions. A higher proportion of their decisions were correct. Alternatively, it is seen that
both groups have very similar error scores.

Table 11 shows more detailed score parameters for the Final clusters (three-cluster
solution). Differences were confirmed by Snedecor's F test (not shown). The pattern for
cluster OP members, including the high percentage decisions, matches that shown
previously for cluster ABC members. Likewise, the pattern for cluster QRS is similar to
cluster DEFGH.

Then it is seen that cluster TU members show a definite third pattern. Their high

percentage decisions are like cluster OP. Their low scores (adjusted percentage) are like

cluster QRS. Their discrepancy is seen in their high percentage errors. This pattern is not
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seen in the Pretest clusters because cluster TU seems to equate to those students who did
not take the Pretest.

Discussion

The first objective of this paper was merely to demonstrate the use of numerical taxonomy
when applied to MCQ data. Buckley-Sharp (1993) had proposed a particular selection
from the methods developed generally for numerical taxonomy, and this paper exemplifies
their use. Given the availability of mechanised data collection, the methods for numerical
taxonomy are not difficult to implement. However, very large data arrays have to be
handled.

Numerical taxonomy is renowned for proposing structure even in random data, and
caution must be exercised in interpretation. Buckley-Sharp et al (1969) proved the
significance of a structure of students in an MCQ examination by performing discriminant
analysis on the original data using cluster identity as the criterion variable. The original
data in that paper was sectional subscore data: continuous and of few dimensions. Such a

process would be more difficult here using binary data of very high dimensionality.

The second objectiove of this paper was to see if there was any commonality between
structures found independently in two separate examinations. This might indicate that a
valid or relevant structure had been found. Both Buckley-Sharp et al (1969) and Buckley-
Sharp (1993) have discussed the desirability of demonstrating structural stability in a
group of students. Stability is required for confidence in 'diagnosis', 'management' and

'prognosis’.

The selection of two examinations which were very close in both subject matter and
timing was deliberate, and they were chosen to make discovery of a matching structure as
likely as possible. Had no adequate agreement been found here, then there would be little
point in widening the criteria for any future study. It would have to be doubted whether
numerical taxonomy has anything to offer in the evaluation of MCQ data. Given the high
reliability of MCQ data, it would then also be unlikely that any other metric could be a

better substitute.

Having found a structure it is always tempting to try to apply labels. The following should

be view with caution.
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Pretest clusters ABC and matched Final clusters OP are characterised by high decision
making, moderate errors, and higher overall scores. With these properties, these clusters
might be labeled INFORMED'.

Pretest clusters DEFGH and matched Final clusters QRS are characterised by low
decision making, also moderate errors, and so lower overall scores. These clusters might
be labeled INDECISIVE'.

Those who did not take the Pretest are a reasonable match with Final clusters TU. They
are characterised by high decision making, but these decisions are often wrong, and so
they have lower overall scores. These clusters might be labeled INDIFFERENT".

It is important to emphasise that these labels are not intended to be true in every nuance,
or to apply exactly to all individual cluster members. Their value lies more in suggesting
patterns of behaviour which might be used to guide the educational process. It may
equally be that these behaviours refer particularly to the examination process, or even
especially to MCQ.

Unpublished work by Harris (DRSE, see Acknowledgements) has shown that students are
less likely to come to a decision in an MCQ examination when faced with a false
alternative than with a true alternative. This failure, giving rise to the suggestion of
indecisiveness, lowers overall scores. It is important to warn students about this property
of MCQ examinations, and to advise them to use as much knowledge as they can muster

to come to decisions on as many questions as possible.

The 'Indifferent' group reach plenty of decisions, but have more errors. Could they lack
some inbuilt warning which, in the other groups, stops students from making excessive
errors? This is not to stray into the extensive discussions which have raged for years into
the matter of guessing in MCQ examinations, but perhaps many students do only make
decisions up to a point where they become uneasy about the possibility of making errors.
In this data, that point is at about an error score of 15%. The 'Indifferent' group presses

on regardless, although making little effective headway in their overall score.

Characterising the groups according to their score parameters is not the only possible
approach. They could be characterised instead by the subset of questions which

discriminate them.
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Conventional question analysis is internal to the examination and uses a high/low overall
score dichotomy as the criterion (Buckley-Sharp & Harris, 1972). An examination with
two clusters allows the usual criterion to be easily replaced. An examination with three
clusters gives three pairs, leading to three analyses. With increasing numbers of clusters
this rapidly becomes complex, so that parsimonious cluster solutions are desirable here
also.

Performing a standard question analysis using cluster membership criteria will distinguish
those alternatives which contribute significantly from those which do not. Further
information might then be available by considering the subject matter of the discriminating

questions. Such an analysis has not been done on the data shown here.

This paper has shown that a taxonomic structure can be observed amongst students taking
MCQ examinations. In these examples some possible interpretation of the structure can be
offered. Nevertheless this interpretation is limited. If students are 'Indecisive' or
'Indifferent' then these may be general traits worthy of some action. On the other hand, to
say that a group is 'Informed' says nothing about how they came to be informed, or even
what exactly they are informed about.
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