
mdbs Numerical Taxonomy using MCQ data Page 1 of 22 

 

 

 

 

 

 

 

 The Principles of Numerical Taxonomy 

  applied to Multiple Choice Question Examinations Data. 

 

 

© (1993)    M.D.Buckley-Sharp 

Department of Chemical Pathology, 

University College London Hospitals, 

 

 

Editorial Note:   This paper was originally prepared for publication in 1993 after a 

lengthy gestation.  It was submitted to and refereed by Medical Education but declined, 

largely it seems on the basis that the readership would not be able to understand it.  That 

is for current readers to judge.  Some of the referees’ minor comments have been adopted 

when preparing this transcription. 
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Summary 

 

Numerical Taxonomy seeks structure amongst objects in a multi-dimensional 

measurement space. The response data to multiple choice examinations provides such a 

measurement space of high dimensionality, and the students/candidates are the objects 

being measured: the examiner is also an object in this space. 

Many detailed methods have been described for use in numerical taxonomy. This paper 

discusses the special features of multiple choice examinations data, leading to choices of 

suitable taxonomic methods from amongst those available. The general form of 

interpretations and the possible value in taxonomic analysis of multiple choice 

examinations are reviewed. 
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Introduction 

 

One of the themes running through multiple choice question (MCQ) examinations 

research is efficiency: the reuse of the same material, and of the examination interaction 

data, for many purposes. Most obviously, examinations are used to grade the candidates 

by scoring (Buckley-Sharp & Harris (1971)). Grading provides a relative scaling, 

particularly a rank order, expressed via the scores. Viewed alternatively, MCQ 

examinations data may be used to assess the examination reliability, and to grade the 

individual questions. Standard methods are built into computer scoring systems (Buckley-

Sharp & Harris (1972a)). 

 

MCQ materials are used in closed examinations. They may also be used as quiz or self-

testing aids; as discussion keys; or as aids to self-learning (Buckley-Sharp & Harris 

(1972b)). To aid in this reuse, MCQ may be stored in a recoverable form, and statistics on 

their effectiveness may be used to aid recall (Buckley-Sharp & Harris (1970)). 

 

Here is outlined an altogether different use for MCQ examinations data: one which, as far 

as can be determined, has not been previously considered. 

 

The MCQ Measurement Space 

 

When students take an MCQ examination, they are each scored against the examiner. The 

examiner is assumed to be omniscient, although errors in the examiner's answers recorded 

for MCQ scoring are not unknown. Each score records the similarity between the 

respective student and the examiner, and a rank order of students is obtained. 

 

The perfect student scores the maximum possible. There is only one way to obtain this 

score, and that is to submit a pattern of responses exactly matching that of the examiner. 
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(Given the examiner's finite probability of failing the omniscience test (qv), the perfect 

student may not score the maximum except by cheating!) 

 

A hypothetical ignorant student obtains a score which can be characterised as random 

(Buckley-Sharp & Harris (1971)). Random scores would be obtained by tossing a coin to 

decide the response to each question in the examination. Of the 2
n
 patterns (where 

n=number of permitted responses) so obtainable, only one will be that of the perfect 

student. The majority, conventionally 95% of all possible patterns, will give scores which 

can be identified as random attempts. Yet it is inherent in the definition of a pattern which 

is random when compared to the examiner, that it is also random when compared to any 

other pattern. 

 

The response data from an MCQ examination forms a multi-dimensional space: to an 

initial approximation it is n-dimensional (where n=number of permitted responses). The 

examiner is at one point in this space. Random scores form a uniform cloud in the 

measurement space so that most, say 95% of all possible patterns, may be recognised as 

being 'remote' from the examiner. 

 

Real students, adequately tutored before an examination, do not show random response 

patterns when scored against the examiner. They are typically well inside the contour 

enclosing those 5% of patterns closest to the examiner. The question is - where exactly? 

 

Traditional scoring is unidimensional: two students with the same score are deemed to 

have identical performance. Yet the measurement space is clearly multidimensional. Two 

students with very high scores must be similar because they are both close to a known 

point - the examiner. But two students with lower scores are not necessarily as close to 

each other as each is to the examiner. 
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Figure 1: Example responses by three students to three questions: and marginal scores. 

Student A B C  

Question     

1 correct correct error 2/3 

2 correct error correct 2/3 

3 error correct correct 2/3 

 2/3 2/3 2/3  

 

In Figure 1, three students have made responses to three questions: the responses have 

already been interpreted against the examiner's pattern. While all three students attain the 

same score, as do all the questions, the response patterns leading to these scores are 

different. We do not know whether students as a whole locate uniformly in the 

measurement space surrounding the examiner, where the simple scores give the distances, 

but all directions are possible; or whether students cluster together into one or more 

discrete and separate locations. 

 

Numerical Taxonomy - An Introduction 

 

Numerical Taxonomy is the branch of statistics which evaluates the clustering of objects 

in measurement hyperspaces. Every problem analysis by this technique passes through 

four stages: 

• Decide on the data parameters, and on the objects from which this data will be 

collected; 

• Establish a suitable measurement of similarity and compute this value between 

every possible pair of objects; 

• Decide on a suitable clustering algorithm, and use it to process the initial similarity 

matrix; 

• Interpret the results. 

 

The remainder of this paper discusses that range of data, objects, measurements and 

algorithms from within the canon of Numerical Taxonomy, which might reasonably be 
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applied to MCQ examinations. The general form of the likely interpretations will also be 

discussed. A subsequent paper (Buckley-Sharp, (1993)) demonstrates and evaluates an 

example of these techniques. 

 

This discussion relies on the standard texts of Sokal & Sneath (1963), and Sneath & 

Sokal (1973). Both of these texts contain detailed bibliographies for further reading: this 

paper is not intended as a comprehensive review. Nevertheless, since Sokal and Sneath 

wrote their texts from backgrounds as biologists exploring the limitations of Linnean 

taxonomy, it is relevant here to test the details of numerical taxonomy separately against 

the particular requirements of MCQ examinations data. Vogt, Nagel & Sator (1987) 

provide a later review, written in the context of medical diagnosis and continuous 

variables: there are some additions in Vogt & Nagel (1992). Youngman (1979) also 

provides a short introduction with worked examples. Buckley-Sharp et al (1969) applied 

cluster analysis to MCQ examinations score and subscore data, but did not use  response 

data directly for taxonomic study. 

 

The Data and Objects 

 

There is no shortage of data in an MCQ examination. It is provided by the responses from 

every student answering every question. The raw data is binary rather than continuous. 

The number of questions is generally large in comparison with the number of students, 

and particularly in comparison with the likely number of clusters. Thus, two difficulties 

commented upon in source texts - continuous or mixed data items, and small 

measurement spaces - are easily avoided. 

 

The objects from whom the data are collected comprise all the students/candidates, and 

including the examiner as an equal participant. The statistical process treats the 

examiner as just another member of the set of objects. But it does become relevant to 
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draw upon the special properties of the examiner at the later interpretation stage, and this 

will be seen in the worked examples (Buckley-Sharp, 1993). 

 

The available data is therefore taken from 

Objects       Oi, i=1,m 

Questions     Qp, p=1,n 

and comprises binary data 

Responses     Rpi, p=1,n i=1,m 

The use of the term 'Object' (Oi) follows that of Vogt et al, in preference to the longer 

'Operational Taxonomic Unit' (OTU) of Sokal & Sneath; but the concepts are identical. 

 

Particularly for whole-year cohorts, and for major examinations, the number of response 

data items could easily range up to 100,000. Therefore issues of automated data 

collection, and of available facilities under particular computer hardware and software 

limitations become relevant. Thus, the computer programs written to support the 

examples have been limited to 120 objects. Even with this restriction, the requirement is 

approximately to create 7000 similarity coefficients, each from perhaps 1000 

comparisons; to make 25 million comparison checks on the coefficients; and to modify the 

7000 coefficients as clustering proceeds: and that from relatively simple methodology. 

 

It is not a prior requirement that the data for numerical taxonomy is from a set of 

uncorrelated parameters. The effect of correlation between the data, which here means the 

responses to the questions, is to reduce the true dimensionality of the measurement space. 

Dimensional reduction may arise either from redundancy in the MCQ examination 

material itself, or from the recording technology. 

 

If one question is duplicated, then the redundancy reduces the dimensionality of the space. 

This also occurs if one question overtly supplies the answer to another, or if two or more 
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questions are mutually exclusive, or if a student can evaluate the answer to one question 

logically from material displayed elsewhere in the examination. These opportunities do 

however depend, perhaps variably, on at least some skill by the student in recognising the 

duplication. Therefore, this effect has the interesting property of reducing the 

measurement dimensionality only in the vicinity of the likely participants, and particularly 

for the participants close to the examiner's point in the space. Participants therefore tend 

to use textual redundancy to gravitate towards the examiner in a way which is not seen 

for random attempts. 

 

Aside from textual redundancy, when MCQ are presented as a stem followed by true/false 

alternatives, then each alternative is a data item. Contrast that common arrangement with 

the older 1-from-5 format, where the number of independent text items must be only one-

fifth that of the equivalent true/false format examination. 

 

There is also likely to be redundancy at the data collection stage, as can be seen by 

considering the usual methods. 

 

For 1-from-5 questions, it is usual to offer five response boxes even though the boxes are 

mutually exclusive and only one of them can be selected. When computing the similarity 

coefficient (qv), the only two possible outcomes from five comparisons are then either  

{5-same + 0-different}, or {3-same + 2-different}. There will also be only two possible 

outcomes, {1-same} or {1-different}, from only one comparison, if the data from a 

question is first reduced to a single value eg, from the domain 'A'-'E' according to the 

single selection made. 

 

For multiple true-false questions, two common formats are 'select if true' (one box 

offered), and the use of two boxes respectively for 'select if true' and 'select if false' with 

the don't know option shown by leaving both boxes blank. Obviously the two-box format 
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collects twice as many physical data items, and the clear distinction between the one-box 

'leave blank if false' and the two-box don't know, represents real information. The two-

box format really provides a single ternary data item, and not a quaternary or two true 

binaries because the option of selecting both boxes is prohibited. Specifically for the 

examiner as a participant, the don't know option is prohibited throughout, and the two 

boxes are perfectly correlated for all questions. For scoring purposes, Buckley-Sharp & 

Harris (1971) showed that the real information content of the one-box format for student 

participants was nearly as high as the two-box format. However, it does not necessarily 

follow that the one-box format is as suitable in the richer dimensionality of numerical 

taxonomy procedures. 

 

This review shows that the true dimensionality of the measurement space is almost certain 

to be less than that suggested by the raw data collection procedure. Depending on the 

format of the examination and the method of recording responses, the dimensionality 

could be little better than a half, or even worse than one fifth of the total collected. Even 

so, MCQ examinations achieve value pre-eminently through quantity of material. The 

statistical methods will operate satisfactorily with redundant data included, and the later 

discussion on the interpretation will show that desirable cluster solutions are likely to be 

parsimonious rather than rich. 

 

Therefore, it seems unnecessary to attempt any preprocessing of the raw data so as to 

reduce internal redundancy. Data reduction certainly can not increase the total 

information content. In this work, the response data has been retained as original binary 

items (<select> and <not-select>) from every response box offered to all the participants. 
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Similarity / Distance 

 

Evaluating a taxonomy using the data collected from the objects requires a measure which 

expresses the similarity between every pair of objects. Some available measures show 

increasing values as the comparison objects become more similar: they are similarity 

coefficients. Other measures increase value as the objects become less similar: they are 

distance coefficients. Much has been written about the suitability of particular coefficients, 

and there is some interaction with the choice of a clustering algorithm (qv). A limited 

number of these measures has been chosen for review here. 

 

The chosen coefficient S must be evaluated for every possible pair of objects Oi, Oj, 

where 

Sij = f(Oi, Oj, n) = f( (Rip, Rjp, p=1,n), n ) : i=1,m j=1,m 

The response data must be compared in parallel from the two objects, and the comparison 

is repeated for all possible pairs: 'f' defines the algorithm of the coefficient S, whose 

calculation may also depend upon n, the number of comparisons made. 

 

A particular axiom is that the similarity/distance of two objects is the same when viewed 

from any direction ie, 

f(Oi,Oj,n) = f(Oj,Oi,n) 

Therefore it is not necessary to compute the full m-square matrix of coefficients, since the 

matrix is symmetric. 

 

Figure 2: Terminology for summarising raw data comparisons: and marginal totals. 

Objecti -> <select> <not-select>  

Objectj    

<select> A B (A+B) 

<not-select> C D (C+D) 

 (A+C) (B+D) (A+B+C+D)=n 
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As each pair of individual binary responses is compared, there are four possible results 

shown by the cell labels in Figure 2. On completion of all the comparisons, A is the count 

of occasions when both objects simultaneously selected an item. Similarly, B, C and D  

are counts of occasions for the other three response comparison possibilities. A and D are 

numbers of matches in the data; B and C are numbers of non-matches. 

 

Sokal & Sneath (1963) discuss two parallel groups of coefficients which respectively 

exclude or include a component for negative matches (D in Figure 2). Then, some 

coefficients weight matches or non-matches more heavily on principle. It would seem 

inappropriate to exclude negative matches as they still represent agreement between 

objects. Sokal & Sneath were working with biological data where absence of a feature 

from two objects is not necessarily a coincidence. Still, they do not recommend any of the 

coefficients which exclude negative matches. There is much educational literature 

condemning selective weighting on the grounds that it cancels out in any large sample. 

Our own unpublished data confirms that when the examiner weights questions, 

supposedly on merit, then the rank order of students is not changed. Retaining negative 

matches, and eschewing selective weighting greatly reduces the variety of coefficients for 

consideration. 

 

As part of the evaluation of these coefficients, mean values have been assessed for the 

comparison of two random patterns using a computer simulation. To allow for practical 

variation in MCQ answering situations, a range of biased 'coin tossing' parameters was 

used for both patterns in the comparisons. The biases were set to provide a <select> 

probability in 10% steps from 10% to 100%: 50% representing no net bias. By varying 

the biases for both patterns, one hundred combinations were tested for each coefficient 

studied. An obvious division which arose was into those coefficients where the mean 

similarity for random patterns remained constant, as distinct from those coefficients where 

the mean similarity varied depending on the biases. 
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Simple Matching: (A+D)/(A+B+C+D) 

   range 0 to 1 

This coefficient has much to commend it, and it is also related to Euclidian distance (qv). 

It is easy to compute since it is only necessary to add up the agreements and not A and D 

separately. If the programming language has an Exclusive-OR function, it is even easier to 

add up the differences and use the converse function ie, 1-(B+C)/(A+B+C+D). The mean 

for random matches depends on the number of selections made. 

 

Ochiai:  AD / SQR{(A+B)(C+D)(A+C)(B+D)} 

   range 0 to 1 

The denominator is the same as Phi, but the numerator is different. The mean value is 

variable for random matches. 

 

Hamann:  {(A+D)-(B+C)}/(A+B+C+D) 

   range -1 to +1 

This is merely  2x<Simple Matching>-1, and has no other advantage. 

 

Phi:   (AD - BC)/SQR{(A+B)(A+C)(C+D)(B+D)} 

   range -1 to +1 

The denominator is the same as for Ochiai, and the mean value is zero for all random 

matches. Phi is familiar to educational researchers as it is commonly used in MCQ 

question analysis. Phi is convertible to chi-square: Cramers V is the absolute value of phi. 

 

Yule:  (AD - BC) / (AD + BC) 

   range -1 to +1 

The numerator is the same as phi. The mean value is zero for all random matches. 

Otherwise, Yule is only an empirical suggestion, and is not a serious contender. 
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At this point it is instructive to examine the scoring formulae commonly used in MCQ 

examinations. It might be supposed that they are suitable coefficients, since they are after 

all used to express a matching to the examiner. 

 

Scoring:  A/(A+C) - B/(B+D) 

   where the examiner is Objecti in Figure 2 

   range -1 to +1 

First, it should be noted that this formula is quite correct for both the one-box answering 

format and the two-box answering format.  The reason is that the two-box format has no 

redundancy from the examiner's point of view. Every text question is offered as two 

exactly converse data items: the examination merely appears to be twice as long, and with 

the response boxes exactly 50%:50% correct:error. This coefficient has an advantage for 

scoring interpretation because it directly represents the proportion correct minus the 

proportion error. 

 

The standard scoring formula is unsuitable for clustering because its value changes if the 

two objects are transposed. To meet the requirement for identity under transposition, the 

formula of a similarity coefficient must use terms from Figure 2 symmetrically about the 

diagonal. All the coefficients chosen to show here, except for the Scoring formula, meet 

that condition. 

 

Distance measures include the average signed distance, the average absolute distance, and 

the Euclidean distance which is the square root of the sum of squared distances. Perhaps 

the most useful is the average squared Euclidean distance because this always ranges from 

0 to 1 for binary data. The concept of distance is a geometric one, and is explained by 

viewing the measurement space. 
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Consider two axes, perpendicular and representing two independent data item vectors. 

Each object may record 0 or 1 on each axis so that the coordinate values (0,0), (0,1), 

(1,0) and (1,1) are all possible and can be plotted against the axes. When two objects are 

plotted simultaneously, their distance apart is calculated by the usual Pythagorean rule and 

can only be 0, 1 or 2
0.5

. If two objects are plotted in three dimensions,  then the maximum 

distance between them is 3
0.5

. In n dimensions, the maximum distance between two 

objects is n
0.5

; the maximum squared distance is n; and by dividing by n, the maximum 

average squared distance is 1, for any value of n. 

 

Since the squared distance, using binary axes, is the sum of the non-matches between the 

two objects, then using the terminology of Figure 2, 

Average Squared Distance: (B+C) / (A+B+C+D) 

   range  0 to 1 

   and this is exactly  1 - <Simple Matching> 

 

The proportion of binary non-matches is also known directly from information theory as 

the Hamming distance. The simple computation, the direct relation to probably the best 

similarity measure, and the obvious geometric and information content interpretations 

make the average squared Euclidean distance a very attractive choice. 

 

The final choice of a suitable coefficient is then affected by the choice of clustering 

algorithm (qv). The algorithm must recompute modified coefficients during the clustering 

process, and a coefficient is preferred if its basis is retained throughout the stages of 

computation. The distance measures meet this requirement. The average squared distance 

has been used in the examples reported elsewhere. 
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Clustering Algorithms 

 

Available clustering methods fall into four classes 

• Associative: where the m objects start with 1 each in m clusters, and the algorithm 

makes repeated fusions to end with 1 cluster containing all objects; 

• Divisive: where the m objects start together in 1 cluster, and the algorithm makes 

repeated separations ie, the reverse of associative; 

• Arbitrary with Relocation: where the m objects are at first arbitrarily distributed 

into a limited number of clusters, hopefully a similar number to a likely solution, 

and the algorithm seeks optimal relocations to find a best fit; 

• Factoring: where the matrix of similarity coefficients is submitted to a standard 

factor analysis; leading significant factors are retained and trailing insignificant 

factors are discarded; the factor solution is rotated to simplify the loadings of the 

m objects onto the factors and thus identify cluster membership. 

 

Most work has been done with associative clustering, and the methods can be shown to 

form a family (Abel & Williams, 1985), where the members are distinguished by different 

methods of recomputing the similarity/distance matrix after each fusion. Amongst the 

many methods are: 

• Nearest neighbour: fuses two clusters where the distance between two objects in 

different clusters is a minimum; 

• Centroid: fuses two clusters where the distance between their centroids is a 

minimum; 

• Incremental Sum of Squares (ISS); fuses two clusters where the increment in the 

within-clusters sum of squares is a minimum: also called Ward's method. 

All these methods are monothetic. Once a cluster is formed, it is never resplit. 
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The ISS method has become popular, and has been used in the examples reported 

elsewhere (Buckley-Sharp, 1993). The criterion is much like that found in ANOVA 

methods. The within-clusters sum of squares represents a collective view of the sizes of 

the clusters at any one level of the solution. It is plausible to seek a minimum of these 

sizes as a current optimum. ISS requires a distance measure rather than a similarity 

coefficient. 

 

As the clustering proceeds, clusters reach different sizes. However, it is not necessary to 

return to the original response data to compute properties of new clusters. Instead, the 

matrix of distance coefficients is quite simply recalculated to reflect each new state. If two 

clusters i and j are being fused to form cluster k, then the distances d*k from new cluster k 

to every other current cluster eg, cluster h, can be found for the ISS method, and the 

following apply: 

Ok = Oi U Oj 

nk = ni + nj 

dhk = { (nh+ni).dhi + (nh+nj).dhj - nh.dij } / { nh+ni+nj } 

where dhi is the previous distance from h to i 

  dhj is the previous distance from h to j 

  dij is the previous distance from i to j 

  nh is the number of members in cluster h 

  ni is the number of members in cluster i 

  nj is the number of members in cluster j 

  dhk is the new distance from h to k 

 

Since the fusion of clusters i and j is chosen because the coefficient dij is the smallest in 

the distance matrix, it is desirable that all the new values in the set dhk are larger than dij. 

Therefore the series of smallest values in the matrix as clustering proceeds should form a 

monotonic increasing function, and this requirement is met by the ISS method. 
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Interpretation - Discussion 

 

It is well known that numerical taxonomy will extract a cluster structure from random 

data. Interpretation of solutions must be plausible and cautious. 

 

A taxonomy asserts that some objects are related ie, close to each other, while being 

distant from other objects or classes of objects. Much of Linnean taxonomy was 

assembled without the use of numerical methods. The notion that gulls and gannets are 

related together, but are less related to goats, would not seem to require statistical 

support. Equally, it should not take much enquiry to distinguish the knowledge base of 

lawyers from that of surgeons. It is perhaps when the observed objects are all somewhat 

similar that a more rigorous numerical method is needed, both to make the distinctions 

and to improve certainty in the interpretation. What types of interpretation might be 

relevant or useful in educational research? 

 

First, a classification identifies groups whose membership may be considered adequately 

homogeneous. The combined data on group members then gives a better characterisation 

of the group than does the data on any one member. This characterisation may lead to a 

descriptive shorthand titling of the group. Titling should be done with caution lest the title 

itself should lead to invalid presumptions. If handling data from say 100 objects, the 

identification of only a smaller number of groups, say 2-5, with larger memberships is 

likely to give better characterisation of the groups. Even so, the identification of any 

groups depends upon the use which might be made of this classification. 

 

A classification which arose from one data collection on a set of objects (in this case 

students) would not be much use unless a matching classification also arose from a 

separate data collection. If every occasion gave a unique result, we could not be certain of 
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the classification, and would not know what action to take. When data is used to make a 

clinical diagnostic classification then value is established if the classification leads to 

understanding of the disease, or to the selection of more effective treatments, or to the 

better prediction of prognosis. These criteria seem transferable to education. 

 

Stability 

In seeking a taxonomy within a group of students, stability of the classification is 

desirable. Buckley-Sharp et al (1969) discussed the educational issues related to stability. 

They only analysed one examination and so could not test for stability. Since students' 

knowledge is expected to evolve, stability may be limited in time, and may also be limited 

within subject areas. Where stability exists it is more likely to be found from two 

occasions in one subject area and very close in time. The examples of numerical taxonomy 

reported elsewhere (Buckley-Sharp, 1993) were chosen to meet this condition, and good 

stability was found. However, the limits of stability, when relaxing either time or subject 

constraints, have not been explored. 

 

Understanding 

The usual performance data on the MCQ examination is always available to help 

understand any classification obtained. Understanding may be assisted by the scores, or 

perhaps from a question analysis. Traditional question analysis is done on the criterion of 

high/low total scores. Question analysis might be repeated but using the taxonomy as the 

criterion. 

 

Selecting Treatment 

Different medical schools may publish different mission statements, and no doubt seek to 

admit students accordingly. Within a school a common official curriculum is normal. 

Taxonomic analysis might suggest that a common curriculum is inappropriate. After an 

MCQ examination, it is not difficult to conceive that the lowest scorers may need 
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remedial teaching. Taxonomic analysis might suggest either the form of that teaching, or 

more usefully that different forms of teaching are indicated for subgroups of low scorers. 

 

Prognosis 

This is the most problematic criterion of value. Simple statements like "If you go on like 

this, you will fail" presuppose that no effective treatment can be provided (qv). Progress 

on relating a taxonomy to prognosis might require trials, splitting identified groups into 

controls and educational treatments: then seeing if either the group becomes 

heterogenous, or the treated group merges with another previously identified group. 

 

A difficulty in medical education is that schools are not necessarily seeking to make a 

uniform product. Students also pursue an enormous variety of actual routes through the 

supposedly uniform curriculum, picking up unique sets of experiences. Perhaps, from the 

detail of a taxonomy, it would only be necessary to distinguish groups representing 

various adequate performances from groups representing various inadequate 

performances. Although it might then be argued that the simple MCQ score meets this 

requirement, a taxonomic analysis might still define preferred remedial treatments for 

different inadequate performance groups. 

 

Other Applications 

This discussion has been entirely of the possibility and uses of a taxonomy of the 

examination participants ie, the students and the examiner. An examination is always an 

interaction between these participants and the material eg, MCQ, which is why the 

participants' taxonomy may vary by time and subject. 

 

Taxonomies of MCQ material have been published before, but perhaps assuming that 

certain materials have inherent constant properties. It would be entirely feasible to study 

operational taxonomies of MCQ by variations of the methods outlined here. 
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